
Matroid Theory on Graphs

Ella Morgan

Supervised by Aras Erzurumluoglu

1 Introduction

Matroid theory was introduced in 1935 by Hassler Whitney in a paper titled “On the Abstract
Properties of Linear Dependence” as an attempt to classify and capture the fundamental properties
of linear dependence. Matroid theory applies the concept of linear dependence to areas outside
of vector spaces. There are many different ways we can define the idea of dependence, resulting
in many different types of matroids. For instance we can apply this concept to graphs through
graphic matroids, where we consider a set of edges in a graph to be dependent if they form a cycle
in the graph. We can then represent graph related problems such as finding minimum spanning
trees, bipartite and non-bipartite matchings, or Hamilton cycles (allowing us to solve the travelling
salesman problem) in graphs. This paper explores matroid theory with an emphasis on how its
applicable to problems in graph theory.

Finding a minimum spanning tree in a graph is an example of a greedy algorithm, which attempts
to find an optimal solution by greedily picking the next best option at each stage. If we can set
up a problem we are trying to solve as a matroid, then the greedy algorithm will always provide
an optimal solution. Bipartite matchings and finding Hamilton cycles in a graph are examples of
problems which require the intersection of matroids, where we find all independent sets common
between two or more matroids. Bipartite matching requires intersecting two matroids, and finding
Hamilton cycles requires intersecting three matroids. A more complicated problem is non-bipartite
matching, which requires the ‘matroid parity problem’. In the matroid parity problem we pair off
all our elements, and a set is only considered independent if for every element we include, we also
include its paired element.

This paper is supplemented by examples coded in Python using SageMath [5] which are included in
the appendix.

1.1 Definitions and Properties

A matroid is defined as an ordered pair M = (E, I) where E is a finite set, referred to as the ground
set, and I is a collection of independent subsets of E which satisfy the following properties [4]:

(I1) ∅ ∈ I
(I2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I
(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 \ I1 such that
I1 ∪ {e} ∈ I.

M is a matroid if and only if its independent set I follows the properties listed above.

A base or basis of a matroid is an independent set of maximal size. We can uniquely define a matroid
by its bases, and the other elements in I will be all subsets of the bases.

Theorem: All bases of a matroid have the same cardinality.

Proof: Assume there are two bases B1 and B2 of matroid M with different cardinalities. Without
loss of generality assume |B1| < |B2|, then by (I3) there exists e ∈ B2 \ B1 such that B1 ∪ e ∈ I,
contradicting B1 having a maximal size, and thus B1 cannot be a basis of M .

If B1 is a basis of a matroid M = (E, I), and I1 ∈ I has the same cardinality as B1, then I1 is
clearly a maximal set of I and thus is also a basis of M .

1

M is a matroid if and only if its set of bases B satisfy the following properties [4]:

(B1) B is non-empty
(B2) If B1, B2 ∈ B and x ∈ B1 \B2, then ∃y ∈ B2 \B1 such that (B1 \ x) ∪ y ∈ B

The rank of a matroid is the size of the largest linearly independent set defined on the matroid.

A circuit of a matroid M is a minimally dependent subset of M , where all proper subsets of a circuit
are linearly independent. A matroid can also be uniquely defined by its circuits. Given a ground
set E of a matroid M and a set of all circuits C, then the independent set I consists of all sets that
are combinations of elements in the ground set which do not have any subsets that are circuits. M
is a matroid if and only if its set of circuits C satisfy the following properties [4]:

(C1) ∅ /∈ C
(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2

(C3) If C1 and C2 are distinct members of C and e ∈ C1 ∩C2, then there exists C3 ∈ C
such that C3 ⊆ (C1 ∪ C2) \ e

Theorem: If I1 is an independent set of a matroid M = (E, I) and e ∈ E is an element of M such
that I1 ∪ e is dependent, then I1 ∪ e contains a unique circuit Ce,I1 which contains e.

Proof: There exists a circuit which must contain e, since I1 is independent and e makes I1 depen-
dent. In order to prove that Ce,I1 is unique, let C1 = Ce,I1 and assume there is some other circuit
C2 = C ′e,I1 distinct from C1. By property (C3), since C1 and C2 are distinct members of C and
e ∈ C1 ∩ C2, then there must exist some C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ e. This causes a
contradiction, as clearly (C1 ∪ C2) \ e is an independent set as (C1 ∪ C2) \ e ∈ I1.

1.2 Types of Matroids

Matric: A matric matroid M = (E, I) is the matroid of a matrix A. The ground set E consists of
the set of columns of A, and I is the set of all linearly independent subsets of E. We consider a set
of vectors to be linearly dependent if one of the vectors can be expressed as a linear combination of
the others.

Example: Below is a matrix that we will demonstrate a matric matroid on.

a b c d e[]
1 1 2 0 0
0 4 0 0 1

Let M = (E, I) be the matric matroid corresponding to this matrix. The ground set is E =
{a, b, c, d, e}, the set of independent sets is I = {∅, {a}, {b}, {c}, {e}, {a, b}, {a, c}, {a, e}, {b, c},
{b, e}, {c, e}}. Since the size of the largest independent set is 2, this matroid has a rank of 2. Thus
every independent set with cardinality 2 is a basis. There is a single circuit consisting of elements
C = {a, b, e}.

Graphic: A graphic matroid M = (E, I) has ground set E consisting of edges of a graph G = (V,E)
and independent sets consisting of all ‘forests’ of G, where a forest is a set of acyclic edges. M may
also be referred to as the cycle matroid of G, and will frequently be denoted MG.

Example: Let MG1 be the graphic matroid of G1, shown in Figure 1. Some independent sets of
MG1

include {f, b, d, g}, {c, f, g, e}, {a, b, f, g} as these sets of edges are acyclic in G1, and some
dependent sets include {c, b, f}, {a, c, d, f}, {e, d, g, b} as these sets contain cycles in G1.

Some bases of MG1 include {f, b, d, g}, {a, c, f, g}, {b, e, f, g}. Any other independent set with 4
elements is also a base, and since all bases have 4 elements the rank of MG1

is 4.

2

All circuits of MG1 can be easily listed, and they are:

C = {{a, c, f, g, e}, {a, c, f, d}, {a, b, g, e}, {c, b, f}, {a, b, d}, {e, d, g}}.
These sets all form cycles in G1, and all proper subsets of them are independent.

Figure 1: Graph G1

Partition: Given a ground set E and a partition of E into disjoint blocks
P1, P2, ..., Pm, we define a partition matroid to not have more than one element from each block
Pi. Our independent set is the following:

I = {I ′ | I ′ ⊆ E, |I ′ ∩ Pi| ≤ 1, i = 1, 2, ...,m}
Example: Define a ground set E = {a, b, c, d, e, f, g} with partition P1 = {a, d, e}, P2 = {c, g},
P3 = {b, f}. The partition matroid on E then has the following bases:

B = {{a, c, b},{a, c, f}, {a, g, b}, {a, g, f}, {d, c, b}, {d, c, f}, {d, g, b},
{d, g, f}, {e, c, b}, {e, c, f}, {e, g, b}, {e, g, f}}.

Where each basis has exactly one element from each block in the partition.

Transversal: Given a ground set E = {ej ; j = 1, 2, ..., n} and a set of not necessarily disjoint
subsets Q = {qi; i = 1, 2, ...,m} of E, a set of elements T = {ej(1), ..., ej(t)}, 0 ≤ t ≤ n is a par-
tial transveral of Q if the elements of T are distinct elements of E, and there are distinct integers
i(1), ..., i(t) such that ej(k) ∈ qi(k) for k = 1, 2, ..., t. If t = m then T is called a transversal of Q, and
T is a system of distinct representatives of Q [1].

A transversal can be represented as a bipartite graph, where one group of vertices represent Q =
{q1, ..., qm} and the other group is the ground set E = {e1, ..., en}. There is an edge between two
vertices qi and ej if ej ∈ qi. Transversals are represented by maximum matchings in this graph.

A matroid M = (E, I) is a transversal matroid if its set of independent sets I consists of all partial
transversals and transversals of Q.

Example: Given a ground set E = {a, b, c, d, e, f, g, h} and subsets Q = {q1, q2, q3} where q1 =
{a, b, d, e, h}, q2 = {b, c, f}, q3 = {d, f, g, h}. Figure 2 shows the bipartite graph G2 which represents
transversals of Q, where valid transversals are represented by maximum matchings in G2.

The matching (q1, a), (q2, f) gives a partial transversal T1 = {a, f}. Although f is also in q3 this is
only a partial transversal as |T1| < |Q|.

Some transversals include {a, c, f} which corresponds to the matching (q1, a), (q2, c), (q3, f) and
{b, d, h} which corresponds to the matching (q1, b), (q2, d), (q3, h).

3

Figure 2: Transversals represented by a bipartite graph G2

2 Greedy Algorithms

A greedy algorithm attempts to find an optimal solution by making the next best decision at each
step without considering any future consequences. Matroid theory has a strong connection to greedy
algorithms, as greedy algorithms provide an optimal solution for a problem if we can set up that
problem as a matroid [3]. The greedy algorithm as shown in Algorithm 1 accepts a matroid M =
(E, I) and a weight function w(·) which assigns a non-negative weight to every element of E, and
returns a maximum weighted set XG of maximal size.

Algorithm 1 Greedy Algorithm

Input: A matroid M = (E, I) with weight function w(·)
Output: An independent set of maximum weight XG

X0 = ∅ and j = 0 // initialization

while ∃e ∈ E \Xj such that Xj ∪ e ∈ I do
Choose an element ej+1 with maximum weight, such that ej+1 ∈ E \Xj and Xj ∪ e ∈ I

Xj+1 = Xj ∪ ej+1

j = j + 1
end while

XG = Xj

return XG

Theorem: Given a matroid M = (E, I) with non-negative weight function w(·), the greedy algo-
rithm (Algorithm 1) will always provide an optimal solution XG.

Proof: Given any basis B = {f1, f2, ..., fk} indexed in a way such that w(f1) ≥ w(f2) ≥ ... ≥ w(fk)
we will show that the result of the greedy algorithm XG = {e1, e2, ..., ek} (indexed such that w(e1) ≥
w(e2) ≥ ... ≥ w(ek)) will always have a total weight greater than or equal to the weight of B. In
order to prove this, we will show that for any 1 ≤ i ≤ k, w(ei) ≥ w(fi). Assume this to not be
true, and let j be the smallest index such that w(ej) < w(fj). Then let I1 = {e1, e2, ..., ej−1} and
I2 = {f1, f2, ..., fj}, but by (I3) since |I1| < |I2| there is some ft ∈ I2 such that I1 ∪ ft ∈ I. Because
w(ej) < w(fj) and w(ft) ≥ w(fj), the greedy algorithm would have selected ft at some stage before
selecting ej since w(ft) > w(et), causing a contradiction.

By the last theorem, we can see that all matroids have the following property [4]:

4

(G) For all non-negative weight functions w: E → R, the greedy algorithm produces a
maximal member of I of maximum weight.

Theorem: M = (E, I) is a matroid if and only if it satisfies the properties (I1) and (I2) from
Section 1.1, and property (G).

Proof: If M is a matroid then we know it must satisfy (I1), (I2), and (G).

Assume that M satisfies (I1), (I2), and (G) but M is not a matroid, thus M does not satisfy (I3).
That is, there exists some I1, I2 ∈ I where |I1| < |I2| and for all e ∈ I2 \ I1, I1 ∪ e /∈ I.

I1 \ I2 is non-empty, since otherwise by (I2) there would be an element in I2 \ I1 which we could add
to it that would make an independent set. Since |I1 \ I2| < |I2 \ I1| we can find some positive ε ∈ R
such that 0 < (1 + ε)|I1 \ I2| < |I2 \ I1|.

Define the weight function w: E → R as the following:

w(e) =

2 if e ∈ I1 ∩ I2,
1 / |I1 \ I2| if e ∈ I1 \ I2,
(1 + ε) / |I2 \ I1| if e ∈ I2 \ I1,
0 otherwise.

The greedy algorithm will first select elements of I1 ∩ I2, and then by the assumption that adding
any elements of I2 \ I1 will make the set dependent, the algorithm will add all elements from I1 \ I2.
Then, as many elements from E \ (I1 ∪ I2) will be added as necessary (which have a weight of 0) to
provide a maximal independent set. Thus our maximum weight set XG has weight

w(XG) = 2|I1 ∩ I2|+ |I1 \ I2|(1/|I1 \ I2|) = 2|I1 ∩ I2|+ 1.

Consider I2, by (I2) I2 must be contained in a maximal set of I, thus there exists some basis I ′2
containing I2 with weight function

w(I ′2) ≥ w(I2) = 2|I1 ∩ I2|+ |I2 \ I1|((1 + ε)/|I2 \ I1|) = 2|I1 ∩ I2|+ 1 + ε.

But by (G) it cannot be that case that w(I ′2) > w(XG), as the greedy algorithm will always produce
a maximal member of I of maximum weight, resulting in a contradiction. Hence if M satisfies (I1),
(I2), and (G) then M must satisfy (I3) as well, proving that M is a matroid.

Minimum Spanning Tree: Finding a minimum spanning tree is the most frequently used ex-
ample of the greedy algorithm for matroids. A spanning tree of a graph G is a set of edges in G
which connect all vertices in G and contain no cycles. When finding a minimum spanning tree in a
weighted graph G we wish to find a set of edges which form a spanning tree of minimum total weight.
In matroid theory, this corresponds to finding a minimum weight basis of the graphic matroid of
G. This can be accomplished through the greedy algorithm with the modification that we seek a
minimum weighted base instead of a maximum one.

Example: Figure 3(a) displays a weighted graph G3 that we wish to find a minimum spanning tree
in. Note that the weight corresponding to each edge is the number in the middle of that edge, in the
cases where the number overlaps two edges. This is the input graph for appendix code A.2 along with
a list of weights associated with each edge. First the function finds the graphic matroid MG3 , then it
orders the edges by smallest to largest weight. It begins by adding the edge with the smallest weight
to a set XG3

. It keeps adding the next smallest weight to XG3
that can be added without causing

the set to become dependent. The function returns the list of edges highlighted in red in Figure 3(b).

5

(a) Graph G3 to find a minimum
spanning tree in

(b) G3 with minimum spanning tree highlighted in
red

Figure 3: Finding a spanning tree in a graph using the greedy algorithm

Greedy Job Assignment: A job assignment problem where there is a pool of applicants each
qualified for a set of jobs, and a pool of jobs ranked in the priority at which they need to be filled.
This problem can be solved optimally by the greedy algorithm. At each step we take the job that
needs to be filled with the highest priority, and assign that job to the applicant who is most qualified.

3 Operations on Matroids

In this section we go over different operations on matroids which form new matroids. These oper-
ations include finding duals, deletion and contraction to form matroid minors, and parallel-series
expansion of matroids.

3.1 Duals of Matroids

The dual of a matroid M = (E, I) is denoted M∗ = (E, I∗). All independent sets of M∗ are disjoint
from at least one basis of M . Let B = {B1, B2, ..., Bn} be the set of bases of M . Then the set of
bases B∗ of M∗ is B∗ = {E \B1, E \B2, ..., E \Bn}.

Theorem: The dual M∗ of a matroid M is a matroid.

Proof: Let M∗ be the dual of matroid M , where B, B∗ are the set of bases of M , M∗, respectively.
We will show that M∗ satisfies conditions (B1) and (B2) from Section 1.1, from which it follows
that M∗ is a matroid.

(B1) Since B is non-empty, it follows that B∗ is non-empty.

(B2) Suppose B∗1 , B
∗
2 ∈ B∗ and let x ∈ B∗1 \ B∗2 . We must show that ∃y ∈ B∗2 \ B∗1 such that

(B∗1 \ x) ∪ y ∈ B∗.

By definition B∗1 = E \B1 and B∗2 = E \B2, then B∗1 \B∗2 = B2 \B1 where B1, B2 ∈ B. It follows
that x ∈ B2 \B1 and from Section 1.1, there is a unique circuit Cx,B1 in B1 ∪ x which will contain
x, where Cx,B1 is minimally dependent so all of its subsets are independent sets.

6

Since Cx,B1 is dependent and B2 is independent, Cx,B1 \ B2 is non-empty. Let y ∈ Cx,B1 \ B2.
Then because (B1 \ y) ∪ x will not contain Cx,B1

, and Cx,B1
was a unique circuit, it follows that

(B1 \ y)∪ x is independent. Because (B1 \ y)∪ x is independent and |(B1 \ y)∪ x| = |B1|, it follows
that (B1 \ y) ∪ x ∈ B.

Since y ∈ B1 \B2, we have that y ∈ B∗2 \B∗1 and (B1 \y)∪x ∈ B implies that E \ ((B1 \y)∪x) ∈ B∗.
Since E \ ((B1 \ y) ∪ x) = ((E \B1) \ x) ∪ y = (B∗1 \ x) ∪ y, condition (B2) is satisfied.

Dual of a planar graph: A planar graph G is a graph that can be drawn on the plane in a
way where none of its edges intersect. The geometric dual G∗ of planar graph G has a vertex for
every face of G, and there is an edge between two vertices in G∗ if that edge touches both faces in
G. Let MG be the graphic matroid of a planar graph G, then the dual M∗G is a graphic matroid.
Furthermore, if G∗ is the geometric dual of G then the graphic matroid MG∗ is isomorphic to M∗G.
Proofs for these will not be presented here, but can be found in [4].

Example: Figure 4(a) shows a planar graph G4 with 4 faces, and Figure 4(b) shows its planar dual
G∗4, which has a vertex for each face of G4. The face contained by edges {c, b, f} in G4 corresponds
to vertex 1 in G∗4, and similarly the face contained by edges {a, b, d} corresponds to vertex 2, {e, d, g}
corresponds to vertex 3, and vertex 0 is the area outside of graph G, known as the ‘unbounded face’.
Edges between vertices in G∗4 represent the edges in G4 touching both planes. For example edge a
in G4 touches face 2 and the outer face, thus vertices 2 and 0 in G∗4 are connected by a. Edge b in
G4 touches faces 1 and 2, thus b connects vertices 1 and 2 in G∗4. The dual of the graphic matroid
MG4

is then the graphic matroid of G∗4, MG∗
4
.

(a) Planar graph G4

(b) Geometric dual G∗4

Figure 4: Geometric dual of a planar graph

3.2 Minors

Matroid minors are formed by two operations: restriction and contraction. Let M = (E, I) and
take some Y ⊆ E. Then M ′ = (Y, I ′) is a matroid, where I ′ = {y | y ⊆ Y, y ∈ I}. We call this the
restriction of M to Y , and denote it M |Y . If T = E \ Y then we denote M ′ as M \ T and refer to
it as the deletion of T . Clearly M |Y = M \ (E \ Y). Contraction is the dual of restriction, and it is
denoted M/T which we refer to as the contraction of T from M. We define contraction in terms of
the dual and restriction operations, where M/T = (M∗ \ T)∗.

Example: This example shows how if MG5 is the graphic matroid of a planar graph G5 then we
can represent the changes being made to MG5

through how G5 changes. Figure 5(a) shows a planar
graph G5 and Figure 5(b) shows G5’s geometric dual G∗5, where M∗G5

is the graphic matroid of

7

G∗5. Figure 5(c) shows G∗5 \ e which is the deletion of edge e from G∗5 and is obtained from simply
removing that edge from the graph without altering the other edges or vertices. The graphic matroid
of G∗5 \ e is equivalent to M∗G5

\ e. Figure 5(d) shows (G∗5 \ e)∗, which is the geometric dual of the
graph in Figure 5(c) which is equivalent to finding G5/e, the contraction of e from the original graph
G5. The graphic matroid of G5/e gives the contraction of e from MG5

, or MG5
/e.

(a) Planar graph G5
(b) Geometric dual G∗5

(c) G∗5/e (d) (G∗5/e)∗

Figure 5: Dual and minors of a planar graph

3.3 Series-Parallel Extension

Starting with a graph G we can add edges in series or parallel to other edges in G. If we can form
a graph by starting from a single edge and building the graph through only adding edges in series
or parallel, then we refer to the graph as a series-parallel graph [6].

In series expansion an edge e of G is replaced by two edges e1, e2 in series. For a matroid M ,
expanding M at x by y in series results in the bases B of M becoming one of the following: B ∪ y
for B a base of M , or B ∪ x for B a base of M and x /∈ B. We denote the series expansion of M at
x by y as sM(x, y).

In parallel expansion an edge e of G is replaced by two edges e1, e2 in parallel. For a matroid M ,
expanding M at x by y in parallel results in the bases of M are all one of the following: B for B a
base of M , or (B \ x) ∪ y for B a base of M and x ∈ B. We denote the parallel expansion of M at
x by y as pM(x, y).

Finding the dual of the series expansion of M at x by y is equivalent to finding the parallel expansion
of M∗ at x by y: (sM(x, y))∗ = pM∗(x, y).

Example: This example shows series and parallel expansion as an operation on the underlying
graph of a graphic matroid. Figure 6(a) displays a graph G6, and Figure 6(b) demonstrates the

8

series expansion of G6 at e by f . The graphic matroid of this graph is sMG6(x, y). The geometric
dual of G6 is shown in Figure 6(c), and the parallel expansion of G∗6 at e by f is shown in Figure 6(d).
The graphic matroid of this graph is pM∗G6

(e, f). It is evident from these graphs that the geometric
dual of Figure 6(b) is the graph of Figure 6(d), displaying that (sMG6

(e, f))∗ = pM∗G6
(e, f).

(a) Graph G6 (b) Series expansion of G6 at e by f

(c) Geometric dual G∗6
(d) Parallel expansion of G∗6 at e by f

Figure 6: Series and parallel expansion of a graph

4 Operations Combining Matroids

4.1 Matroid Intersection

We define matroid intersection as the intersection of the independent sets of two matroids M1 =
(E, I1), M2 = (E, I2) defined on the same ground set E. Their intersection M1∩M2 is the following:

M1 ∩M2 = (E, I1 ∩ I2).

The result of M1 ∩M2 is not necessarily a matroid. With weighted matroid intersection we find the
independent set with the largest weight common to both matroids.

4.2 Matroid Union

Given two matroids M1 = (E1, I1) and M2 = (E2, I2) we define their union M1∪M2 as the following:

M1 ∪M2 = (E1 ∪ E2, I)

9

Where I is defined as follows:
I = {I ′1 ∪ I ′2 | I ′1 ∈ I1, I ′2 ∈ I2}

The union of matroids results in a matroid.

4.3 Applications

Bipartite Matching: A maximal matching of a bipartite graph G with parts X and Y can be
found by intersecting two partition matroids of G. Take the first matroid M1 to be the partition
matroid where elements of the ground set are placed in the same block if they are adjacent to the
same vertex in X, and likewise let M2 be the partition matroid where elements are placed in the
same block if they are adjacent to the same vertex in Y . The intersection of M1 and M2 then gives
all feasible matchings, and if the edges of G are weighted then an optimal solution can be found by
determining which feasible matching has maximum weight.

Example: Figure 7(a) shows a weighted bipartite graph which we seek a maximum weighted match-
ing on. This graph is the input to appendix code A.3 along with a set of its weights. In the function
the first matroid M1 corresponds to the partition matroid induced by edges incident to vertices 1,
2, and 3. Thus in each independent set of M1 there is only at most one edge incident to each of
these vertices. Likewise, partition matroid M2 is induced by edges incident to vertices 4, 5, 6, and
7, thus in its independent sets there is only at most one edge incident to each of those vertices. The
intersection of these two matroids returns all feasible matchings. The edges highlighted in red in
Figure 7(b) display the largest matching returned by the function.

(a) A weighted bipartite graph
G7 to find a maximum matching on

(b) The graph G7 with its optimal
matching highlighted in red

Figure 7: Finding a matching in a bipartite graph through matroid intersection

Hamilton Cycle: A Hamilton cycle is a path in a graph G on n vertices which starts and ends
on the same vertex, and visits each vertex of G in between the start and end vertex exactly once.
This problem can be formulated as the intersection of three matroids. Before creating our matroids
we arbitrarily choose one vertex e to split into two vertices, one where we will begin at and one
we will end at, creating a new graph G′ on n + 1 vertices. All outgoing edges of e shall leave from
our ‘starting’ vertex e1 and all incoming edges of e shall return to our ‘ending’ vertex e2. Our first
matroid M1 will be a graphic matroid of the undirected graph of G′. The other two matroids M2

and M3 will be partition matroids. In M2 we place to edges in the same block if they are directed
into the same vertex, and likewise in M3 we place edges in the same block if they direct out of the

10

same vertex. We then intersect M1,M2,M3, and we only consider a solution feasible if it consists of
n edges.

The travelling salesman problem is the problem of finding a minimum weighted Hamilton cycle in a
graph G. In the case that we have more than one feasible solution, we take the optimal solution to
be the solution with the smallest total weight.

Example: Figure 8(a) shows a directed graph that we seek to find a Hamilton cycle in. This
graph is the input to appendix code A.4, which created three matroids based on this graph and
finds their intersection. The first matroid is the graphic matroid of the undirected graph of G7,
the first partition matroid is based off the partition P1 = {{h, i}, {a, k}, {b, c}, {m}, {d, n}, {e, f},
{g, p}, {r, o, q}, {j, l}} and the second partition matroid is based off the partition P2 = {{a}, {b, j},
{l}, {c, d}, {e, o}, {m}, {f, q}, {g, h}, {i, k, n, p, r}}. The resulting Hamilton cycle obtained by
intersecting these three matroids is highlighted in red in Figure 8(b).

(a) Directed graph G8 to find a Hamilton cycle in
(b) Result of finding Hamilton cycle in G8

highlighted in red

Figure 8: Finding a Hamilton cycle in a graph

5 Matroid Parity Problem

The matroid parity problem generalizes matroid intersection and non-bipartite matching problems
[2]. We pair off the elements in the ground set E of a matroid M , then for any e ∈ E and its ‘paired’
element ē ∈ E, if we add e to a parity set S we are required to add ē to the parity set as well.

Matroid Intersection: The intersection of two matroids M1 = (E, I1) and M2 = (E, I2) can
be generalized by the matroid parity problem. Create a new matroid M̄2 = (Ē, Ī2) isomorphic to
M2 where E and Ē are disjoint. Then the intersection of M1 and M2 becomes the problem of solving
the parity problem on M1 ∪ M̄2 where if e ∈ E is included in an independent set, then ē ∈ Ē must
also be in the independent set.

Non-bipartite Matching: To find a matching in a graph G = (V,E) which may or may not
be non-bipartite, start by subdividing all edges of G so that each edge in G is replaced by two
edges e and ē (adding a new vertex connecting those two edges), and call this new subdivided graph

11

G′ = (V ′, E′). Then we define a partition matroid M where edges of E′ are placed in the same
block if they are incident to the same vertex V from the original graph G. We then find feasible
matchings by solving the matroid parity problem, where each edge e and its pair ē must be added
to an independent set together.

Example: Figure 9(a) shows the unweighted graph we wish to find a matching on. The first step
is subdividing all the edges and renaming them, as shown in Figure 9(b). For example in G9 edge a
is adjacent to vertices 0 and 1, and after subdividing a into a and a′ a new vertex is added (vertex
6) so that a is now incident to vertices 0 and 6, and a′ is incident to vertices 1 and 6.

Next the partition matroid is formed with blocks P = {{a, b, c}, {a′, d}, {d′, e}, {b′, e′, f}, {f ′, g},
{c′, g′}}, then we solve the matroid parity problem on this partition matroid, where we only select
independent sets where each edge is included with its ‘pair’, e.g. if a is in an independent set then
a′ must be as well. The result of this is a set of all feasible solutions, then we choose the optimal
solution to be the feasible solution with largest weight. The code for this is given in appendix code
A.6. The weights of the graph are displayed in Figure 9(c), and the largest weight matching is
highlighted in red in Figure 9(d).

(a) Input graph G9
(b) Input graph after subdividing edges,
creating G′9

(c) Weighted graph G9 (d) Result of maximum matching

Figure 9: Subdividing edges for non-bipartite matching

12

References

[1] Jack Edmonds and Delbert Ray Fulkerson. Transversals and matroid partition. Technical report,
Rand Corp Santa Monica CA, 1965.

[2] Eugene L. Lawler. Combinatorial optimization: Networks and matroids. 1976.

[3] USR Murty and Adrian Bondy. Graph theory (graduate texts in mathematics 244), 2008.

[4] J.G. Oxley. Matroid Theory. Oxford graduate texts in mathematics. Oxford University Press,
2006.

[5] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020.
https://www.sagemath.org.

[6] Dominic JA Welsh. Matroid theory. Courier Corporation, 2010.

13

A Code

A.1 Partition Matroid

Input: Accepts a partition of elements as a list of lists, where the inner lists are the blocks of the
partition.

Output: Returns all bases of the partition matroid defined by the partition passed to the function.

def PartitionBase(edge_list):

total_elements = 1

for i in map(len, edge_list):

total_elements *= i

base = [set() for x in range(total_elements)]

elements = total_elements

for edges in edge_list:

n = elements / len(edges)

elements /= len(edges)

rep = total_elements / (n * len(edges))

for i, edge in enumerate(edges):

for j in range(rep):

for k in range(n):

base[i*n + j*(total_elements/rep) + k].add(edge)

return base

A.2 Minimum Spanning Tree

Input: A SageMath graph object and a dictionary of weights indexed by the edge labels of the
graph.

Output: A list of edges which provide a minimum weight spanning tree in the input graph.

def SolveGreedy(graph, weights):

greedy_set = set()

M = Matroid(graph)

sorted_weights = sorted(weights.items(), key=operator.itemgetter(1))

independent_sets = list(map(set, M.independent_sets()))

for weight in sorted_weights:

greedy_set.add(weight[0])

if not (greedy_set in independent_sets):

greedy_set.remove(weight[0])

return list(greedy_set)

14

A.3 Bipartite Matching

Input: A SageMath bipartite graph object and a dictionary of weights indexed by the edge labels
of the graph.

Output: A list of edges which provide a maximum weighted matching in the input graph.

def SolveBipartiteMatching(bipartite_graph, weights):

temp_list = []

edge_list = []

for i in list(bipartite_graph.left):

for j in bipartite_graph.edge_iterator([i]):

temp_list.append(list(j)[2])

edge_list.append(temp_list)

temp_list = []

M1 = Matroid(bases=PartitionBase(edge_list))

temp_list = []

edge_list = []

for i in list(bipartite_graph.right):

for j in bipartite_graph.edge_iterator([i]):

temp_list.append(list(j)[2])

edge_list.append(temp_list)

temp_list = []

M2 = Matroid(bases=PartitionBase(edge_list))

intersect = M1.intersection(M2, weights)

return(list(intersect))

A.4 Hamilton Cycle

Input: A directed graph as a SageMath digraph object, and the name of a vertex s to split into
two vertices (the choice of this vertex is arbitrary and doesn’t affect the results).

Output: Returns a list of edges which give a Hamilton cycle in the input graph.

def SolveHamiltonCycle(digraph, s):

new_vertex = digraph.order() + 1

digraph.add_vertex(new_vertex)

for e in digraph.incoming_edge_iterator(s):

digraph.delete_edge(e)

digraph.add_edge(e[0], new_vertex, e[2])

M = Matroid(digraph.to_undirected())

15

p_out = []

p_in = []

for v in digraph.vertices():

temp_out = []

temp_in = []

for e in digraph.outgoing_edge_iterator(v):

temp_out.append(e[2])

if len(temp_out) > 0:

p_out.append(temp_out)

for e in digraph.incoming_edge_iterator(v):

temp_in.append(e[2])

if len(temp_in) > 0:

p_in.append(temp_in)

for e in digraph.incoming_edge_iterator(new_vertex):

digraph.delete_edge(e)

digraph.add_edge(e[0], s, e[2])

digraph.delete_vertex(new_vertex)

p = ListIntersection(list(map(set, PartitionBase(p_out))),

list(map(set, PartitionBase(p_in))))

return list(ListIntersection(list(map(set, M.bases())), p)[0])

A.5 Matroid Parity Problem

Input: A matroid and a parity set represented as a list of sets, where each inner set contains two
elements that are paired off together.

Output: A list of independent sets of the input matroid which are a valid parity set.

def SolveParityProblem(matroid, parity_set):

result = set()

independent_sets = list(map(set, matroid.independent_sets()))

for L in range(1, len(parity_set)+1):

for subset in itertools.combinations(parity_set, L):

s = sum(set(subset), ())

if set(s) in independent_sets:

result.add(s)

return result

A.6 Non-bipartite Matching

Input: A SageMath graph object to find feasible matchings on.

16

Output: List of all feasible matchings.

def SolveMatching(graph):

parity_set = set()

partition = []

matchings = []

edges = graph.edges()[:]

vertices = graph.vertices()[:]

s = graph.order()

for i, e in enumerate(edges):

graph.subdivide_edge(e, 1)

graph.set_edge_label(e[0], (s + i), str(e[2] + ’1’))

graph.set_edge_label(e[1], (s + i), str(e[2] + ’2’))

parity_set.add((str(e[2] + ’1’), str(e[2] + ’2’)))

for v in vertices:

partition.append(list(list(zip(*graph.edges_incident(v)))[2]))

M = Matroid(bases=PartitionBase(partition))

for match in SolveParityProblem(M, parity_set):

temp_list = []

for e in match:

if e[1] == ’1’:

temp_list.append(e[0])

if(len(temp_list) > 1):

matchings.append(temp_list)

return matchings

17

