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PROBLEM
There's a significant gap between the reasoning capabilities of humans and computers,

especially when it comes to making sense of real-world processes. This work aims to bridge

this gap through aligning observations from the real world with a given underlying planning

model. The goal is to learn which underlying planning state is being represented in a given

image, where these observations may have visual variations that may result in them looking

visually different, but still represent the same underlying state. Furthermore, we want to take

advantage of the given underlying structure to identify when a prediction made is incorrect,

to boost prediction accuracy and usability in real life.

The top of the figure displays four images of visualized states from the grid domain.

Possible actions include moving the robot between adjacent rooms, and picking up or

placing an object in the room the robot is located in. In the first state, the robot is holding a

t-shirt, which is represented by an icon in the bottom left corner. In the next states, the item

is placed in the current room, and then the robot moves down and then right. The state

space is shown in the graphs below the images, where nodes represent states and edges

represent valid actions between states, with the current and previous states highlighted.

First, a model is trained to predict the states from the images. Afterwards, we use the

structure of the state space to align the sequence of the predictions to a path in the state

space graph, maximizing the probability of the sequence of state predictions aligning with

the state space.

HIDDEN MARKOV MODELS
This problem can be modelled as a hidden Markov model (HMM). A HMM consists of set of

states X which produce observations from a set of emissions Y. The states are hidden, and

they can only be reasoned about from the sequence of observed emissions. The model is

governed by state transition and state emission dynamics.
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DATA GENERATION

Examples of transitions between pairs of states, where each image on the bottom row is

the result of applying an action in the state shown in the top row. From left to right the

domains are Blocks World, Elevator, Grid, and Towers of Hanoi, and the actions applied

respectively are: picking up a block, moving the elevator down one floor, moving the robot

to the room to the left, and moving a disk (represented as an article of clothing to increase

the difficulty of the domain) from one peg to another. Objects are samples from fashion-

MNIST, and appear in random locations in the rooms in the Elevator and Grid domains to

increase variation in the generated images.

PLANNING DOMAINS

ALIGNING ALGORITHMS

Greedy Align
The greedy method constructs the full trace by finding edges in the graph one at a time,

starting from the beginning of the trace. It begins by finding the best edge between the

first two observations, taking into account the probabilities of both states. This procedure is

called if the current state is unknown. A state is unknown if it is either the first state or an

edge failed to be found in the previous step. Once we find an edge, we try and continue

the path by selecting the next most likely state which continues the connected path.

Viterbi Algorithm
Viterbi's algorithm finds the most probable state sequence by finding the path that

maximizes the joint probability of the observed sequence and the sequence of states. It

takes in a hidden Markov model and works by computing, for each possible state at each

time step, the probability of the most likely path to that state from the initial state, given

the observations up to that time step. These probabilities are calculated recursively using

the previous probabilities and the transition probabilities between states.

Above is an interpretation of a hidden Markov model to represent planning domains. The

sequence (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) represents the transitions undergone between states, where

each sequential state 𝑥𝑖 is the result of taking an action 𝑎𝑖−1 in the previous state 𝑥𝑖−1.

These underlying states are hidden as we must reason about them from the sequence of

emitted observations 𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5 , which represent the visualized planning states. We

use a trained state prediction model to obtain the emission probabilities of the

observations. This model outputs a probability distribution over all states for a given

observation, giving the probability 𝑝𝑖,𝑗 of observation 𝑜𝑖 being emitted from state 𝑥𝑗 for all

𝑥𝑗 ∈ 𝑆.

We formalize a planning state space as 𝑃 = 〈𝑆, 𝐴, 𝑓〉 where 𝑆 is a finite and non-empty set

of states, 𝐴 is the set of actions, 𝐴 𝑠 ⊆ 𝐴 denotes the actions applicable in each state 𝑠 ∈
𝑆, and 𝑓(𝑎, 𝑠) ∈ 𝑆 denotes a state transition function for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠).
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