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Problem

How many ways can we arrange a set of n objects, if there are
restrictions on the positions each object can be in?

Ella Morgan (MATH 4620H) Forbidden Positions and Rook Polynomials 2 / 23



Problem Setup

We represent this problem as a board, with darkened squares
representing the invalid positions for each object. We are
interested in ways we can position non-capturing rooks on the
board, where we can only place them on the light squares.
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Rook Polynomial

Let rk(B) be the number of ways to place k non-capturing rooks
on the darkened squares of a board B. The rook polynomial
R(x ,B) is the generating function of rk(B):

R(x ,B) =
∑
k

rk(B)xk .

Note that for any any board B, r0(B) = 1.
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Theorem

Let r0(B) + r1(B)x + r2(B)x2 + · · ·+ rk(B)xk be the rook
polynomial for the darkened squares of an n × n board B. Then,
the number of ways to place n rooks on the light squares of B is
counted by

n!− r1(B)(n − 1)! + r2(B)(n − 2)! + · · ·+ (−1)k rk(B)(n − k)!.
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Proof

Use the Principle of Inclusion-Exclusion and let Pi be the property
that there are at least i rooks in forbidden positions.

There are ri (B) ways to place i rooks in restricted positions. Then,
there are (n − i)! to arrange the rest of the rooks without
consideration for whether their positions are restricted or not.

Therefore for all i ∈ N, Pi = ri (B)(n − i)!, allowing us to arrive at

n!− r1(B)(n − 1)! + r2(B)(n − 2)! + · · ·+ (−1)k rk(B)(n − k)!.
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Theorem

Let R(x ,B1), R(x ,B2) be the rook polynomials of disjoint
subboards B1, B2 of a board B. Then

R(x ,B) = R(x ,B1)R(x ,B2).

This idea can be extended to any number of disjoint subboards,
thus

R(x ,B) = R(x ,B1)R(x ,B2) · · ·R(x ,Bk)

for disjoint subboards B1, . . . ,Bk .
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Example
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Subboard Rook Polynomials

r0(B1) = 1, r1(B1) = 2, r2(B2) = 1

R(x ,B1) = 1 + 2x + x2

r0(B2) = 1, r1(B2) = 4, r2(B2) = 4,
r3(B2) = 1

R(x ,B2) = 1 + 4x + 4x2 + x3
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Rook Polynomial of B

Then by the disjoint subboard theorem, we get that the rook
polynomial for the original board B is

R(x ,B) = R(x ,B1)R(x ,B2) = (1 + 2x + x2)(1 + 4x + 4x2 + x3)

= 1 + 6x + 13x2 + 13x3 + 6x4 + x5

and we get

5!− 6× 4! + 13× 3!− 13× 2! + 6× 1!− 1× 0! = 33

ways of placing 5 rooks on the light squares of B so that they are
non-capturing.
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Rook Polynomials in Three Dimensions

To be non-capturing, each rook must be the only rook in its slab,
wall, and layer.

Slab: Wall: Layer:

Essentially, given the coordinates of all rook positions, no pair of
rooks can have the same position in the same component. (Ex.
rook positions (1, 2, 3) and (2, 3, 1) are valid, but (1, 2, 3) and
(3, 2, 1) are not as they have the same second component).
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Theorem

Let r0(B) + r1(B)x + r2(B)x2 + · · ·+ rk(B)xk be the rook
polynomial for the darkened squares of an n × n × n board B.
Then, the number of ways to place n rooks on the light squares of
B is counted by

(n!)2−r1(B)((n−1)!)2+r2(B)((n−2)!)2+· · ·+(−1)k rk(B)((n−k)!)2.
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Theorem

The rook polynomial of an m × n × r board (denoted Bm,n,r )
where all positions are restricted is

R(x ,Bm,n,r ) =
s∑

k=0

(
m

k

)
P(n, k)P(r , k)xk

where s = min{m, n, r}.
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Proof

In a m × n × r board there are
(m
k

)
ways to choose the slab,

P(n, k) ways to choose the wall, and P(r , k) ways to choose the
layer to place the k rooks.

We need to pick the wall and layer instead of choosing since the
order we select them in matters.

For example, points (1, 2, 4) and (1, 3, 5) are different from points
(1, 2, 5) and (1, 3, 4).
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Example
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Rook Polynomial of Subboards

We have disjoint subboards B1,1,1, B2,2,2, and B1,1,1.

We can clearly see that B1,1,1 has rook polynomial
R(x ,B1,1,1) = 1 + x .

Using the formula for an m × n × r board of all restricted squares,
we get that the rook polynomial of B2,2,2 is(

2

0

)
P(2, 0)P(2, 0) +

(
2

1

)
P(2, 1)P(2, 1)x +

(
2

2

)
P(2, 2)P(2, 2)x2

giving R(x ,B2,2,2) = 1 + 8x + 4x2.
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Rook Polynomial

Then the rook polynomial of the original board B is

(1 + x)2(1 + 8x + 4x2) = 1 + 10x + 21x2 + 16x3 + x4

and we can place 4 non-capturing rooks on the light squares of the
board in

(4!)2 − 10× (3!)2 + 21× (2!)2 − 16× (1!)2 + 1× (0!)2 = 285

different valid arrangements.
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Derangements in 2 and Higher Dimensions

A derangement of n objects in two dimensions is represented as a
n × n board with the diagonal darkened.

O1

O2

O3

O4

P1 P2 P3 P4

Note that the squares along the diagonal are all disjoint, and have
rook polynomial 1 + x . Therefore any board representing a
derangement of n objects has rook polynomial (1 + x)n.
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Generalization to Higher Dimensions

To extend the hat example, we consider k articles of clothing left
by the door by each person.

Now, we are interested in arrangements where each person does
not choose a single article of clothing that belongs to them, and
for each item they choose, none of their other chosen items has
that same owner.

Ex. if person A chooses person B’s hat, person A may not choose
person B’s scarf as well. If we consider this in more dimensions
than three, no pair of the m items a person chooses may belong to
the same person.
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Thee Dimensional Visualization
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Connection to Latin Squares

There is a one-to-one correspondence between this generalized
derangement of m people with d − 1 articles of clothing, and Latin
rectangles of size d ×m with the first row in order.

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

The above Latin rectangle gives rook coordinates
(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1), (5, 1, 2).
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Thee Dimensional Visualization
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The End!
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