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1 Introduction

We wish to find the number of arrangements of n objects, where each object has a (possibly empty)
set of restricted positions. We represent the restricted positions in an n X n board, where the rows
represent objects and columns represent positions, and a darkened square represents a restricted
position for an object. Then, finding an arrangement is equivalent to placing n markers on the
white squares of our board in a way where no two markers are in the same row or column. Another
way to describe this is by requiring the markers to be non-capturing rooks. In chess, rooks may
move any number of squares either vertically or horizontally, thus a rook is non-capturing as long
as no other pieces are in the same column or row.
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Figure 1: This represents the board for four objects Oy, Oz, O3, O4 where O; has restricted position
Ps3; Oy has restricted positions P;, P», P3; Os has restricted position P»; and O4 has no restricted
positions. Rooks placed in the manner shown represent the arrangement 04020501 .

Definition (Rook Polynomial): Let r;(B) be the number of ways to place k non-capturing rooks
on the darkened squares of a board B. The rook polynomial R(z, B) is the generating function
of ri(B):

R(z,B) =Y ri(B)".

k
Note that for any any board B, ro(B) = 1.

Note that while earlier we describe seeking a placement of rooks on the light squares, in general
the rook polynomial is representing a placement of rooks on the darkened squares. Often, sources
do not make a distinction between rook polynomial for the darkened squares vs. light squares. We
will make this distinction by referring to the rook polynomial for placing rooks on darkened squares
as the ‘rook polynomial for darkened squares’, and vice versa for placements of the rooks on light
squares. If not specified, it is safe to make the assumption it refers to the placement of rooks on
darkened squares.

Theorem: The rook polynomial for light squares of an m x n board (denoted B, ,) with no

restrictions is .
m
R(z,Bpmn) = P(n, k)z*
(2. Buw) kE_O:(k) (n. )

where s = min{m,n}. Equivalently, this is also the rook polynomial of an m x n board where all
squares are restricted.



Proof: Each term ry(z, Bp,n) = (T)P(n, k) counts the number of ways to place k non-capturing
rooks on an m x n board with no restrictions. Each rook is in a unique column and row. There
are (7,?) ways to choose the rows, then P(n, k) ways to choose and permute k of the columns. The
columns are permuted instead of chosen as this represents the number of ways they can be paired
with different rows. (Ex. placing rooks on squares (1, 2) and (2, 3) is a different arrangement than

placing rooks on squares (1, 3) and (2, 2)).

The next theorem allows us to count the number of ways to place n rooks in the light squares of an
n x n board with restrictions.

Theorem: Let ro(B) + 71 (B)x +r2(B)x? + - - - + 1, (B)z* be the rook polynomial for the darkened
squares of an n X n board B. Then, the number of ways to place n rooks on the light squares of B

is counted by
n! —ri(B)(n— D! +r3(B)(n—2)! + -+ (=1)*rp(B)(n — k). (1)

Proof: We arrive at this formula through the Principle of Inclusion-Exclusion. Let P; be the
property that there are at least ¢ rooks in forbidden positions. There are r;(B) ways to place i rooks
in restricted positions. Then, there are (n—1)! to arrange the rest of the rooks without consideration
for whether their positions are restricted or not. Therefore for all i € N, P, = r;(B’)(n —1)!, allowing
us to arrive at the theorem above.

The next thing we can note is that permuting the rows and columns of a board B does not change the
rook polynomial. This is just a matter of relabeling objects and positions, resulting in an equivalent
problem. Therefore, we may permute the rows and columns to obtain disjoint subboards, where our
board can be broken down into regions whose columns and rows to not overlap.
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Figure 2: A demonstration of rearranging a board into two disjoint subboards. First rows Oy and
Os are exchanged, then columns P, and P are exchanged to get two disjoint regions of darkened
squares, one on columns P;, P5 and rows Os, Oy, the other on columns P3, Py, P> and rows Os, Os,
0.

Theorem (Disjoint Subboards): Let R(x,B;), R(z,Bz) be the rook polynomials of disjoint
boards B, By of a board B. Then

R(z, B) = R(z, B1)R(x, Bs).
This idea can be extended to any number of disjoint subboards, thus

R(xv B) = R(SC, Bl)R(xv BQ) to R($, Bk)
for disjoint subboards By, ..., By.

We may now easily find the rook polynomial for the darkened squares of the board in Figure 2.



The rook polynomial for the darkened squares of this board is 1 + 2z + 22 as there
is one way to place zero rooks, two ways to place one rook, and one way to place
two rooks on the darkened squares.

The rook polynomial for the darkened squares of this board is 1+ 4z +4x2 + 23
as there is one way to place zero rooks, four ways to place one rook, four ways
to place two rooks, and one way to place three rooks on the darkened squares.

From this, we get that the rook polynomial R(z, B) for the darkened squares of the board is

R(x, B) = R(x, B1)R(x, By) = (1 + 22 4+ 2*)(1 + 42 + 42* + 2°)
=1+ 62+ 1322 + 1323 + 62" + 2.

Now, we may use (1) to find the number of arrangements as

5l—6 x4l +13x3—13x 2!l +6 x 11 —1 x 0! = 33.

Therefore there are 33 ways to place rooks on the white squares of the original board in Figure 2 so
that they are non-capturing.

1.1 Derangements

In a derangement, we seek an arrangement of objects such that each object is not in its original
position. For example, in the hat problem, where we wish to know in how many ways a group of
people who arrived with a hat can leave with any hat but their own. Given objects Oq,...,0,
ordered by their index, we want arrangements where the index of an objects position is not the same
as the objects index, i.e. object O; can be in any position but P;. We can represent this as an n xn
board with squares along the diagonal darkened.
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Figure 3: This board represents a derangement of four objects, where n non-capturing rooks are
placed on the light squares.

Notice that each darkened square represents a disjoint subboard of size 1 x 1. The rook polynomial
of each square is 1 4+ 2, making the rook polynomial of an n x n board (1 + x)".
Through the binomial theorem, we get that the rook polynomial of a derangement board is

R(z,B) = i: (Z) k.

k=0



Then through expression (1) from the first section, which utilized the Principle of Inclusion-Exclusion,
we are able to arrive at a formula for the number of derangements d,,:

dy =l — (’f) (n—1)!+ (Z) (n—2)1 4+ (~1)" (2)0!.

1.2 Triangle Boards and Stirling Numbers

A triangle board is a board where every square above the diagonal is restricted. This is equivalent
to a permutation of n objects where O; cannot be in positions P ... P,; Os cannot be in positions
Ps...P,; O3 cannot be in positions Py ... P,; and repeat until object O,,, which has no restrictions
on its position.
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Figure 4: A triangle board of size 4.

A connection is made between triangle boards and the Stirling numbers of the second kind. The
Stirling numbers of the second kind, S(n, k), count the number of ways to partition n elements into
k non-empty subsets. They are defined recursively as

S(n,k)=8Sn—-1,k—1)+kS(n—1,k).

Theorem: The number of ways to place k non-capturing rooks on a triangle board of size m is
equal to S(m +1,m +1— k).

Proof: This proof closely follows that from [1], which uses induction on m.

Induction Hypothesis: Assume that S(m 4+ 1,m + 1 — k) is the number of ways to place k
non-capturing rooks on a triangle board of size m.

Basis of Induction: Start on a triangle board of size 2. If k = 2, then the only way to place
rooks is along the diagonal (the highest non-restricted square of each column). There is 1 way to
do this, and S(2+1,2+1—2) = 5(3,1) = 1. If k£ = 1, then there are three ways to place a single
rook on a square as there are 3 squares. We can see that S(2+1,2+1—1) = 5(3,2) = 3.
Therefore the basis of induction holds.

Induction Step: Consider placing k rooks (0 < k < m+ 1) on a triangle board of size m + 1.

First of all, if k = m + 1, then this can only be done through placing the rooks along the diagonal
(top of each column), and if £ = 0 then there is only one way as well. This provides the correct
number as S(m+2,m+2—-1—-(m+1)) =Sm+2,1) =1and S(m+2,m+2-1-0) =
S(m+2,m+1)=1.

Now we may consider the remaining possibilities, where 1 < k < m. There are two cases:

Case 1: There are no rooks in the row with m + 1 squares. If we remove this row we are left
with a triangle board of size m, and we know there are S(m + 1,m + 1 — k) ways to place the



k rooks on this board from the induction hypothesis. Keep in mind that k& < m, allowing us to
place these k rooks on this smaller board.

Case 2: There is a rook in the row with m + 1 squares. From the induction hypothesis there
are S(m+1,m+1—(k—1)) = S(m+ 1,m — k + 2) ways to place the k — 1 rooks on all
rows except the largest one. We know there is exactly one rook in the largest row as there
cannot be more than one in the same row. Since each of the k — 1 rooks are in different columns
(cannot be more than one in a column), there are k — 1 squares in the bottom row in which
we are unable to place our rook. Since there are m + 1 squares in the largest row, we have
m+1—(k—1) =m — k+ 2 available squares, giving a total of (m —k+2)S(m+1,m —k+2)
valid rook arrangements.

Summing all of these options results in

Sm+1,m+1—-k)+(m—k+2)Sm+1,m+2—k)

arrangements. Comparing this to the recursive definition of the Stirling numbers of the second
kind, we can observe that

Sm+2,m+2-k)=S(m+2)—1,m+2—-k)—1)+(m+2-k)S(m+2)—1,m+2—-k)
=Sm+1l,m+1-k+(m—-k+2)S(m+1,m+2—k)
proving that the induction hypothesis holds for triangle boards of size m+1 and all 0 < k < m—+1.

It follows that S(m+1,m+1—k) is the number of ways to place k non-capturing rooks on a triangle
board of size m.

2 Extending to Three Dimensions

To extend this concept to three dimensions, we imagine a series of boards stacked upon each other,
and will denote a series of squares along the new dimension as a ‘tower’, as described and originally
introduced in [3].

We use the notion of ‘slab’, ‘wall’ and ‘layer’ from [1]. A slab refers to a set of squares with the
same first component (rows in two dimensions), a wall refers to a set of squares with the same
second component (columns in two dimensions), and a layer is a set of squares with the same third
component. The distinction between slabs, walls, and layers, vs rows columns, and towers is that
the former set is two-dimensional while the later refers to a single ‘line’ of blocks.

We now need to extend the movement of the rook. Now, the rook may move to any point which
shares one (or more) components with it, meaning it may technically move diagonally so long as
one component remains the same. This does make the rook analogy fall apart as it violates the
rules of 3D chess [2], but for the sake of the interesting applications we are meant to ignore this
inconsistency.

In the following theorems we will see that many ideas from the previous section extend quite easily
to boards of three dimensions.

Theorem: The rook polynomial for light squares of an m x n x r board (denoted B, 5 ) with no
restrictions (or equivalently, the rook polynomial for darkened squares for a board where all positions

are restricted) is
S

R(z, Bpmr) = Y (’Z) P(n, k)P(r, k)z* (2)

k=0

where s = min{m,n,r}.



Proof: This extends the related theorem for two dimensions. Where in two dimensions there was
(T]Z) ways to choose k rows, then P(n, k) ways to choose and permute k columns, we next consider the
number of ways to choose and permute k towers, which there is P(r, k) ways to do, where again the
permutation is done to assign the chosen towers to different row and column combinations. (Once

again, providing the distinction between points (1,2,3), (2,3,4) and points (1,2,4), (2,3,3)).

Theorem: Let ro(B) + 71 (B)x +r2(B)x? + - - - + 11 (B)z* be the rook polynomial for the darkened
squares of an n X n X n board B. Then, the number of ways to place n rooks on the light squares
of B is counted by

(n1)? = r1(B)((n = DY + r2(B)((n = 2)H)* + - + (= 1) re(B)((n — k)1)*. 3)

Proof: The only distinction from the two-dimensional version of this proof is the squaring of the
factorials. After choosing k restricted squares through ri(B), we now have k slabs and k walls
we cannot place the remaining n — k rooks in, providing us n — k of each left to choose from.
There are (n — k)! ways to choose slabs, (n — k)! ways to choose walls, resulting in the term being

ri(B)((n — k)2,

Theorem (Disjoint Subboards): Subboards By, Ba, ..., By of a three dimensional board B are
disjoint if they share no slabs, walls, or layers. Then

R(x, B) = R(x, B1)R(z, Bs) - - - R(x, By).

We may use the previous theorems to find the number of ways to place non-capturing ‘rooks’ in the
light blocks of the following board.

Figure 5: A three-dimensional board.

Notice that this board can be broken into three disjoint subboards. The board breaks down into
two 1 x 1 x 1 subboards, and the 2 X 2 x 2 subboard in the center. We may use the formula in (2) to
find the rook polynomials for these ‘cube’ subboards. We can easily see that the rook polynomials
for the 1 x 1 x 1 cubes are 1+ z. For the 2 X 2 x 2 cube we get:

R(x,Baga) = (§> P(2,0)P(2,0) + G) P(2,1)P(2, 1)z + @) P(2,2)P(2,2)z?

=1+ 8z + 4a”.
Then, we find the rook polynomial of B as

R(z,B) = (14 2)*(1 + 8z + 42?) = 1 + 102 + 212% + 162° + 2*.



Next we use (3) to arrive at the number of ways to place 4 rooks on the board:

(412 —10 x (31)% +21 x (21)? — 16 x (11)? + 1 x (0!)? = 285.

Therefore there are 285 ways to place 4 rooks on the board from Figure 5.

2.1 Derangements in 3 (or more) Dimensions and Latin Squares

Now, we will generalize derangements to three or more dimensions. To extend upon the hat example,
say there are d articles of clothing each person has left by the door (perhaps it is winter in Canada).
Now, we are interested in arrangements where each person does not choose a single article of clothing
that belongs to them, and for each item they choose, none of their other chosen items has that same
owner. Ex. if person A chooses person B’s hat, person A may not choose person B’s scarf as well.
If we consider this in more dimensions than three, no pair of the m items a person chooses may
belong to the same person.

Figure 6: The cross-sections of a 3-dimensional derangement, equivalent to the clothing problem
with 5 people and 3 articles of clothing.

Theorem: There is a one-to-one correspondence between this generalized derangement of m objects
in d dimensions, and Latin rectangles of size d x m with the first row in order.

Proof: We will demonstrate that a bijection exists between these two structures.

First, consider the mapping from rook placements to Latin rectangles. Every rook placement has
a unique coordinate, (i1,12,...,%4), representing its position in all d dimensions, where each of
i1,42,...,4q € {1,...,m}. Let 1,...,m be the symbols of the Latin rectangle, so that we have
a natural correspondence between coordinates and symbols in the rectangle. Since any two rooks
are ‘capturing’ if they have any components in common, we know that no component is the same
between any pair of coordinates. For example, if the symbol 1 appears as the first component (1)
of one rook’s coordinates, no other rook can have a 1 as the first component of their coordinates.
Therefore, if we look at the same component in all coordinates, they will all be unique. Since we
have m coordinates, we have m distinct symbols across rook coordinates for each component.

Map the coordinates to a position in the first row of the Latin rectangle based on their first compo-
nent, in order from 1,...,m. For the second row, place the second component for each coordinate
below their first component, and repeat for all components, filling in a d x m Latin rectangle. Since
each component goes along each row of the Latin square, we have each symbol exactly once in each
row. Since each coordinate will have no two components that are the same, the columns of the
Latin rectangle will contain unique symbols in all squares. Thus this is a valid Latin rectangle and
provides an injective mapping from rook placements to Latin rectangles.

Next, take any d x m Latin rectangle. Take the columns as the coordinates of rooks, where the first
row is the first component, second row is the second component, etc. Since each column has no
repeated symbols, each coordinate has no components that are the same. This is equivalent to no
person choosing an item that belongs to them, as one of the components represents their ‘restricted
index’ (this is the added third component in the 3-dimensional case), and also restricts them from



choosing more than one item belonging to the same person. This covers all restrictions placed on
choosing items.

Then, since rows have distinct elements, this means that in all coordinates there are none that have
the same symbol in the same component. This is necessary in the example, where each component
can be thought of representing a specific item or a person (their ‘restricted index’). If one component
has the same symbol between coordinates, this represents either two people choosing the same item,
or two people having the same restricted index (i.e. they own the same items). As these are against
the nature of the problem, this restriction is necessary. This covers all necessary restrictions in
the problem, and demonstrated that Latin rectangles correspond quite naturally to this generalized
problem of derangements.

Since we may map all rook placements in this generalized derangement problem and Latin rectangles
to each other, this demonstrates a bijection between the two structures.
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